|
原帖:
梁在自由振动的工况下,挠度值已知,如何计算其弯矩值
1梁的类型呢,就算是简支梁吧
2梁的截面呢,就算是槽钢吧
3 梁的弯矩值是针对梁的横截面而言的,梁横截面上的弯矩随截面位置不同而变化,所以才有弯矩方程和弯矩图的概念,这家伙以为弯矩值是质量吗
4 自由振动是系统受初扰动后不再受外界激励时所作的振动强调系统不受外力。简支梁的振动又有横向振动、纵向振动、扭转振动等等之分,
简支梁的横向振动和扭转振动又会产生耦合的情形。假设只有横向振动
5 在自由振动的工况下怎么理解,以简支梁为例,梁水平,假设有一个集中力,作用在梁中间,垂直水平面,使梁向下平面弯曲。
集中力瞬间撤掉,在弯矩的作用下,梁开始横向振动,因为强调的是自由振动,则梁两边的铰支点摩擦力忽略不计。
所以理想状态下,简支梁会自行按其固有频率振动,好比在外力使弹簧振子的小球和单摆的摆球偏离平衡位置后,
它们就在系统内部的弹力或重力作用下振动起来,不再需要外力的推动。
简支梁的自由横振动不是个小题目,梁的横向振动问题是振动力学范畴。以上理论分析也有班门弄斧之嫌,毕竟没学过。
《重庆交通大学学报(自然科学版)》 2012年01期
以简支梁的自由横振动问题为背景,求解一个非稳态四阶线性偏微分方程的初边值问题。
通过引进辅助函数组,将四阶问题转化为二阶混合初边值问题。
对两个辅助函数和二阶混合初边值问题进行离散并消掉中间变量,
对由简支梁两端挠度为零得来的二阶偏微分边界条件进行近似处理,
构造出求解四阶非稳态线性偏微分方程的差分隐格式。
数值实验表明构造的隐格式绝对稳定并且具有很高的精度阶。
梁的横向振动(振动力学)
http://wenku.baidu.com/view/e86f5cf887c24028905fc3a8.html?from=search
神贴必有神回复
这个可以用creo simulate的优化设计找到施加的力或者力矩的大小 软件真是强大,这个有限元分析真的厉害,没有那些复杂的计算,还直观,非常好!
|
|